LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc.DEGREE EXAMINATION -PHYSICS
 THIRD SEMESTER - APRIL 2019
 PH 3506- MATHEMATICAL PHYSICS

Date: 24-04-2019
Time: 01:00-04:00
Dept. No. \square Max. : 100 Marks

PART-A

Answer ALL Questions
(10×2=20 marks)

1. Find the square root of $-4-3 \mathrm{i}$.
2. Evaluate $\oint \frac{3 z^{z}+7 z+1}{z+1} d z$, where C is the circle with $|z|=\frac{1}{2}$
3. Find the directional derivative of $\phi(x, y, z)=x^{2} y z+4 x z^{2}$ at $(1,-2,1)$ in the direction of $2 \hat{i}-\hat{j}-2 \hat{k}$.
4. Define double and triple integrals with one example each.
5. Define half range Fourier series. Give example.
6. State Dirichlet's conditions for a Fourier series.
7. prove that the matrix $(1 / \sqrt{ } 3)\left[\begin{array}{cc}1 & 1+i \\ 1-i & -1\end{array}\right]$ is unitary
8. What do you mean by orthogonal matrix? Give one example.
9. State Simpson's $1 / 3$ rule.
10. Write down the normal equations for fitting a straight line $y=a+b x$ by the method of least squares.

PART-B

Answer ANY FOUR Questions
(4×7.5=30 marks)
11. Prove that $u=x^{2}-y^{2}-2 x y-2 x+3 y$ is harmonic. Find a function v such that $\mathrm{f}(\mathrm{z})=\mathrm{u}+\mathrm{iv}$ is analytic. Also express $\mathrm{f}(\mathrm{z})$ in terms of z .
12. A fluid motion is given by $\vec{v}=(y+z) \hat{i}+(z+x) \hat{j}+(x+y) \hat{k}$. Show that the motion is irrotational and hence find the velocity potential.
13. Expand as a Fourier series, the output of a half wave rectifier.
14. Define rank of a matrix. Find the rank of a matrix $\left[\begin{array}{cccc}1 & 3 & 4 & 2 \\ 2 & -1 & 3 & 2 \\ 3 & -5 & 2 & 2 \\ 6 & -3 & 8 & 6\end{array}\right]$ by reducing it to normal form.
15. Solve the following system of equations by using Gauss-Seidal method correct to 3
decimal places.

$$
\begin{aligned}
& 8 x-3 y+2 z=20 \\
& 4 x+11 y-z=33 \\
& 6 x+3 y+12 z=35
\end{aligned}
$$

16. (i).Derive Newton-Gregory forward interpolation formula for equal intervals (4 marks).
(ii). Find the values of y at $x=21$ from the following data
$\begin{array}{llll}\mathrm{x}: 20 & 23 & 26 & 29\end{array}$
y: $\begin{array}{lllll}0.3420 & 0.3907 & 0.4384 & 0.4848 & \text { (3.5 marks) }\end{array}$

PART-C

Answer ANY FOUR Questions
(4×12.5=50 marks)
17. (i) State and prove Cauchy's integral theorem (6 marks).
(ii) Use Cauchy's integral formula to evaluate $\int_{c} \frac{z}{z^{2}-3 z+2} d z$, Where C is the circle $|Z-2|=1 / 2$.

(6.5 marks)

18. (a) State and prove Stoke's theorem (7marks).
(b) Use Gauss divergence theorem to evaluate $\iint_{S} \vec{A} d s$ where $\vec{A}=x^{3} \hat{i}+y^{3} \hat{j}+z^{3} \hat{k}$ and S is the surface of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$

(5.5 marks).

19. (i) If $\mathrm{A}=\mathrm{xz}^{3} \bar{i}-2 \mathrm{x}^{2} \mathrm{yz} \bar{j}+\mathrm{xyz}^{4} \bar{k}$. Find $\nabla \times A$ at the point $(1,-1,1)$.
(ii) Find the inverse of a matrix A by applying elementary transformation
$A=\left[\begin{array}{cccc}0 & 2 & 1 & 3 \\ 1 & 1 & -1 & -2 \\ 1 & 2 & 0 & 1 \\ -1 & 1 & 2 & 6\end{array}\right]$

(7.5marks).

20. (i)Find the Fourier sine transform of $1 / x$.
(ii) Obtain a Fourier expansion of $f(x)=x^{3}$, for $-\pi<x<\pi$ (5marks).
21. Find the Eigen values and Eigen vectors of a given matrix A by writing its characteristic equation,
$\mathrm{A}=\left[\begin{array}{lll}3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5\end{array}\right]$
22. (i) Compute y at $x=0.25$ by modified Euler's method. Given $y^{\prime}=2 x y, y(0)=1$ (6.5 marks)
(ii) Evaluate the integral $\mathrm{I}=\int_{4}^{5.2} \log _{e} x d x$ using Trapezoidal rule and Simpson's $1 / 3$ rule.

(6 marks)

